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Abstract
Recent advances in time series generation have
shown promise, yet controlling properties in gen-
erated sequences remains challenging. Time Se-
ries Editing (TSE)—making precise modifications
while preserving temporal coherence—consider
both point-level constraints and segment-level
controls that current methods struggle to provide.
We introduce the COCKTAILEDIT framework
to enable simultaneous, flexible control across
different types of constraints. This framework
combines two key mechanisms: a confidence-
weighted anchor control for point-wise constraints
and a classifier-based control for managing sta-
tistical properties such as sums and averages
over segments. Our methods achieve precise lo-
cal control during the denoising inference stage
while maintaining temporal coherence and inte-
grating seamlessly, with any conditionally trained
diffusion-based time series models. Extensive
experiments across diverse datasets and models
demonstrate its effectiveness. Our work bridges
the gap between pure generative modeling and
real-world time series editing needs, offering a
flexible solution for human-in-the-loop time se-
ries generation and editing.

The code1 and demo2 are provided for validation.

1. Introduction
Time series data is highly prevalent in our daily lives, from
financial markets to healthcare systems, where time series
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generation (TSG) is increasingly vital for analysis and pre-
diction (Wang et al., 2024). Current approaches excel in
unconditionally generating time series data, such as VAEs
(Lee et al., 2023; Bao et al., 2024; Sommers et al., 2024),
GANs (Goodfellow, 2016; Wiese et al., 2020; Miao et al.,
2021), and diffusion models (Kong et al., 2020; Rasul et al.,
2021; Li et al., 2022; Alcaraz & Strodthoff, 2022). However,
this unconditionally generated time series may be impracti-
cal in many applications. For example, in the retail industry,
companies hope to forecast the revenue of an unreleased
product. Unconditionally generated data may fail to sat-
isfy desired properties that seem obvious to producers, i.e.
sales should peak during holiday seasons or after coupons
mailed. Therefore, we hope to guide the generation pro-
cess with certain prior knowledge. A simple case of prior
knowledge would be data points that the generated curve
must pass through. In such case, an intuitive method would
be to manually replace the point on the generated curve.
However, this method does not consider the possibility that
the point could be correlated with the rest of the time series
curve. Therefore, this post-editing method risks generat-
ing out-of-distribution time series and does not leverage
any information provided to us from partially observed data
points or known trends. Thus, we hope to develop a princi-
pled way for generating time series while obeying certain
user-specified rules, i.e. achieving controlled TSG.

We developed COCKTAILEDIT, a unifying framework
named for its ability to mix and blend different types of
controls—much like mixing ingredients in a cocktail—to
create precisely tailored time series outputs. Our framework
embodies a wide range of various control types illustrated
in Figure 1. We categorize these controls by their range of
focus. For example, we may have user-provided point-wise
control, such as a single measurement on a fixed date with
its confidence interval. On the other hand, we can also focus
on global properties such as overall trend, periodicity, or
specific data statistics (average, sum, optimizers, etc.). We
regard these problems as an overall Time Series Editing
(TSE) challenge (Jing et al., 2024), tackling this challenge
means producing time series data that can simultaneously
satisfy user-defined constraints while maintaining temporal
coherence and distributional fidelity.
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Figure 1. Overview of Time Series Editing (TSE): From unconditional generation to Time Series Editing, including (a) Point-level control
using fixed points and soft points with uncertainty, (b) Segment-level control including trend and aggregated statistics (sum, average, etc.).

Methods for tackling subsets of the TSE challenge exist.
For instance, control using provided trends in data can be
achieved using models GANs (Yoon et al., 2019; Baasch
et al., 2021), VAEs (Lee et al., 2023; Sommers et al., 2024),
Diffusion Models (Ang et al., 2023; Tashiro et al., 2021;
Yang et al., 2023; Cao et al., 2024; Tian et al., 2024; Ren
et al., 2024; Adib et al., 2024) and editing skills in Table 1.
Diffusion models have also been applied to achieving point-
wise control (Coletta et al., 2023).

Table 1. Previous works for Time Series Editing. The RCGAN∗

and TimeGAN∗ adopt additional controls (Coletta et al., 2023)
.

Method Fixed Soft Trend Statistics Train with
Point Point Condition

GAN Models
RCGAN∗ (Esteban et al., 2017) ✓ ✗ ✓ ✓ ✓
TimeGAN∗ (Yoon et al., 2019) ✓ ✗ ✓ ✓ ✓
WGAN-COP (Coletta et al., 2023) ✓ ✗ ✓ ✓ ✓

Diffusion Models
DiffTime (Coletta et al., 2023) ✓ ✗ ✓ ✓ ✓
TimeWeaver (Narasimhan et al., 2024) ✗ ✗ ✓ ✗ ✓
TEdit (Jing et al., 2024) ✗ ✗ ✓ ✗ ✓
TimeBridge (Park et al., 2024) ✗ ✗ ✓ ✗ ✓
CocktailEdit (Our) ✓ ✓ ✓ ✓ ✗

However, none of these methods demonstrates satisfactory
performance while being sufficiently fast and easy to use.
They often incorporate prior knowledge by embedding pro-
vided signals into the model or training data, limiting flex-
ibility for real-time human-centered modifications. Some
methods choose to set a hard constraint on the learned dis-
tribution by embedding signals into the model architecture,
e.g. time signals are injected into attention layers through
additional embeddings, which limit the scope of this method
and fail to consider possibilities of different kinds of human
feedback/expected control signal (Yang et al., 2023; Cao
et al., 2024; Tian et al., 2024; Ren et al., 2024; Zhang et al.,
2024; Adib et al., 2024). In light of these considerations,

we propose a novel method that overcomes these difficulties
and can be used off the shelf with no additional training
process. Our method utilizes diffusion models because they
offer a mathematically rigorous framework that surpasses
GANs in perceptual quality while avoiding adversarial train-
ing difficulties (Song et al., 2020b;a). This enables safe and
verifiable injection of control signals - critical for achieving
precise control in time series editing tasks.

Through theoretical analysis and extensive experiments, we
demonstrate that our method achieves precise control while
maintaining temporal coherence and distributional fidelity.
By bridging the gap between pure generative modeling and
practical time series editing needs, our work offers a flexible
solution for human-in-the-loop applications like revenue
forecasting with expert knowledge integration and scenario
analysis. Our key contributions include:

• First unified framework for multi-grained TSE that
enables point-wise and segment-wise manipulation of
temporal patterns only on the inference stage

• Patching time series with the confidence-weighted tar-
get points simplifies human-in-loop modification with
linear feedback under theoretical guarantees. Control
temporal segments with aggregated statical properties.

• Our bottom-up methods can be extended and applied
simultaneously to more points, and segments for longer
time series in a conflict-free manner.

2. Preliminaries
2.1. Problem Formulation

The objective of TSE is to generate time series data that
replicate the statistical properties of real-world sequences
while adhering to specific user-defined controls. Given a
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set of time series S = {xi}Ni=1, where each xi ∈ RL×D

(L is the sequence length, D is the number of features),
we aim to develop a model fθ that learned from S and
parameterized by θ such that: x = fθ(C), C represents the
prior conditions. The model should be able to generate time
series x that satisfies both the learned distribution and the
provided constraints.

2.2. TSE Decomposition and Challenges

TSE is an umbrella term embodying difficulties from tradi-
tional time series tasks: prediction, imputation, and gener-
ation. However, while these classical tasks operate under
specific, disjoint conditions – prediction uses historical data
up to time t, imputation relies on partially observed seg-
ments, and unconditional generation requires no prior data –
TSE must handle hybrid scenarios with multiple constraints.

Such complexity is divided into three dimensions: (1) tem-
poral granularity (point-wise, segment-wise, and whole-
series operations), (2) conditioning type (observed values,
user-defined constraints, and learned patterns), and (3) trans-
formation scope (X for temporal range and Y for value
constraints). Decomposing TSE into these three orthogonal
components allows us to systematically handle editing oper-
ations across scales while maintaining consistency between
local modifications and global patterns.

Naturally, methods are also suggested to support extension
from point-wise to segment-wise operations, and ultimately
to whole-series transformations. Value constraints should
incorporate both explicit user-defined targets and implicit
constraints inferred from underlying models, providing flex-
ibility while preserving time series characteristics.

2.3. Diffusion Models as Backbone

Diffusion models enable data generation through denoising,
avoiding GANs’ training instabilities and VAEs’ reconstruc-
tion limitations (Ho et al., 2020; Pinheiro Cinelli et al.,
2021; Goodfellow, 2016). The unique temporal dependen-
cies and multi-scale patterns inherent in time series data
make controlled generation a difficult task. Diffusion mod-
els, particularly DDPMs, present a solution as their iterative
nature enables control at each denoising step. Moreover,
classifier-free guidance and classifier-based modeling pro-
vide theoretical guarantees for this controlled generation.
These properties allow us to achieve generation with distri-
bution consistency and thus preserve important local and
global time series properties inherent in the data. With the
use of DDPMs, we developed a strategy to support editing
constraints across temporal granularity, the basis of all the
complex tasks that our work handles.

2.4. Diffusion Models: DDPM and Conditional

Denoising Diffusion Probabilistic Models (DDPM) De-
noising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020) approximate a data distribution q(x) by gradually
adding noise to data samples and then learning to reverse
this noising process. The forward process is defined as a
Markov chain:

q(x1:K | x0) =

K∏
k=1

q(xk | xk−1) (1)

q(xk | xk−1) = N
(
xk;

√
1− βk xk−1, βkI

)
, (2)

where βk ∈ [0, 1] controls the noise variance at each step.
The reverse process is modeled by a parameterized Gaussian
(Ho et al., 2020; Meijer & Chen, 2024):

pθ(xk−1 | xk) = N
(
xk−1;µθ(xk, k), σ

2
kI
)
. (3)

To generate samples conditioned on extra inputs C (e.g.,
labels or prompts), Denoising Diffusion models augment
the reverse process:

pθ(x | C) =

T∏
t=1

pθ(xt−1 | xt,C), (4)

where
pθ(xt−1 | xt,C) = N

(
xt−1; µθ(xt, t,C), Σθ(xt, t)

)
.
(5)

3. COCKTAILEDIT

To tackle the multi-grained TSE task, we propose the
COCKTAILEDIT that integrates point-wise and segment-
wise controls, which includes two control mechanisms: (1)
a confidence-weighted point control (anchor control) for pre-
cise point specification, and (2) an enhanced classifier-based
control for managing segment-level aggregated statistical
properties. These mechanisms are implemented during the
reverse diffusion process and can be used simultaneously,
enforcing constraints across different granularities. A com-
plete table of notations is included in Appendix A.1.

3.1. Point-Wise Control: Anchors with Confidence

Problem Setup Point-wise control can be formulated as a
constrained imputation task. Given a time series x with both
observed values xob, called anchors, at known indices Ω(x)
and target values xta which is the final target output, we
aim to synthesize the target values using a diffusion model
pθ(x) trained on complete data while respecting the con-
straints. Formally, we define point-wise control constraints
as: Cpoint = {(ti,vi, ci,wi)}Ni=1, where ti ∈ {1, . . . , L}
specifies the time index, vi ∈ R defines the expected value,
ci ∈ {1, . . . , D} indicates the feature index, and wi ∈ R
represents the confidence level.
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3.1.1. FLOAT-MASK IMPUTATION

Replace-Based Masking In Diffusion-TS and Diffwave
(Yuan & Qiao, 2024; Kong et al., 2020), the infilling method
for conditional sampling is based on replace-based impu-
tation with a diffusion model. Thus, we adopt the replace-
based imputation method as the initial point (Song et al.,
2020b). For replace-based imputation, observed values are
fixed at each step via the forward process, while missing
values are iteratively refined with the diffusion model. By
injecting exact samples of the known values into the la-
tent sequence, the update steps for unknown dimensions
gradually conform to the observed data distribution.

q
(
xt

ob | x0
ob

)
= N

(
xt

ob;
√
αt x

0
ob, (1− αt)I

)
, (6)

xt
ta = xt+1

ta −
√

βt∇xt+1
ta

log pθ
(
xt+1

ta | xt+2
ta ,xt

ob

)
, (7)

where αt =
∏t

i=1(1− βi).

Confidence-Based Masking How can we leverage the
controllability of the aforementioned method but increase its
flexibility to align users’ requirements and expected output?
We can treat injecting xob as adding a series of discrete
masks m ∈ {0, 1} for xta and xob at each time step, i.e.

xt = m⊙ xt
ob + (1−m)⊙ xt

ta. (8)
A natural extension is to consider continuous masks m ∈
[0, 1]L×D for better generalization instead of m ∈ {0, 1}L.
The continuous mask allows for a smooth linear combina-
tion of observed data with model-generated updates, pro-
viding point-wise confidence weighting (anchor control).
Then now the Cpoint can be reparameterzied as following:
the xi,yi, ci are grouped as the x0

ob and the combined wi

is the float mask m, which is restricted to wi ∈ [0, 1] and
m ∈ [0, 1]L×D. When wi = 1, the observed data is pre-
served, and when wi = 0, the model-generated data is
retained.

Linear Controllability For output-oriented tasks, the re-
lationship between user input and actual changes must be
predictable and intuitive. Consider the iterative reverse
process from time xT down to x0 under a confidence
mask m ∈ [0, 1]L×D. At each step t → t − 1, let
xt = m ⊙ xt

ob +
(
1 −m

)
⊙ xt

ta. Base case (t = T ):
xT is Gaussian noise by definition. Inductive step: As-
sume xt is updatied for last timestep t; the reverse diffusion
update refines xt

ta via xt−1
ta ← xt

ta−
√
βt−1∇xt

ta
log pθ(. . .),

while xt−1
ob remains fixed (replace-based or float-masked).

Hence xt−1 = m⊙ xt−1
ob +

(
1−m

)
⊙ xt−1

ta , preserving
the same linear form. Thus by induction, each reverse step
remains a linear combination, and as m→1 the final sample
converges to the anchor xob under intensity described in m.

With such provable linearity, the confidence mask aligns
closely with human intuition regarding the expected linear

behaviour of the change, ensuring better alignment of subse-
quent changes and accommodating user-defined constraints.

3.1.2. ADVANCED FLOAT-MASK CONTROL

While the proposed float-mask imputation provides a foun-
dational mechanism for bridging the observed point to the
final target data, more effective control mechanisms can be
introduced to enhance the model’s performance.

Time-Dependent Weighted Guidance To emphasize
stronger control in later steps, we introduce the time-
dependent weight:

ωt = exp(−γ t

num timesteps
), (9)

which decays exponentially over time. This additional factor
scales the mask value and gradient term during the inferenc-
ing stage, yielding stronger guidance at early timesteps and
diminishing influence later in the denoising process.

Dynamic Error Adjustment on Float Mask Instead of
a static mask, m can be dynamically adjusted during the
reverse diffusion steps based on intermediate predictions
or error metrics. This allows the model to adaptively allo-
cate more attention to regions with higher uncertainty or
discrepancy from desired constraints: mt−1 = mt +∆mt,
where ∆mt is a function of the current estimation error
∥xt

ta − xtarget
ta ∥ and with less inference steps.

3.2. Segment-Wise Control

3.2.1. TREND CONTROL

From button to up, aggregated points can represent the trend
of segments or even the whole time series. We observed
that let L encode the relationship between time value and
expected value in functions over this segment. If L is con-
tinuous, we can interpolate it to a discrete reference trend
lt ∈ R for each time and corresponding values:

lt = Lts +
t− ts
te − ts

(Lte − Lts), t ∈ {ts, . . . , te}. (10)

With simply extending groups of (ti,vi, ctrend,wi) for
Cpoint, which ti ∈ {ts, . . . , te}, vi = lt, we can consider
multiple observed points as the trending control. The mi

can be adjusted according to the user’s requirements.

Hierarchical Masking for Multi-Scale Control Contin-
uing from trend control, to handle different temporal scale
conflicts on Cpoint, hierarchical masking can be employed.
With multiple masks at varying granularities (e.g., local, seg-
ment, global), to control the diffusion process at different
temporal resolutions. The combined mask m is obtained by
merging masks from each hierarchy level:

m = λ1mlocal + λ2msegment + λ3mglobal, (11)
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where λi are weighting coefficients ensuring that the com-
bined mask maintains values within [0, 1].

3.2.2. STATISTICS CONTROL

For the statistics control, we can reformat the Segment-
Wise Control: Csegment = {(sj , ej , cj , αj ,wj)}Mj=1, where
sj , ej ∈ {1, 2, . . . , L} are the start and end indices of the
segment, and αj ∈ R is the parameters for aggregated
functions, wj are the weights of gradient intensity. Score-
Based DDPM for Controllable Generation Guidance can
further sampled toward desired attributes for Section 2.4:

xt−1 = µθ(xt, t,C) + Σθ(xt, t)∇xt
log pϕ(C | xt),

(12)
allowing controlled generation without retraining (Song
et al., 2020b; Meijer & Chen, 2024). These works high-
light how DDPMs, continuous-time Score-based SDE ap-
proaches, and conditional guidance strategies collectively
enable powerful generative models that transform simple
noise into complex data while remaining highly adaptable
to additional constraints.

Additional Loss Term: Follow controllable diffusion mod-
els and (Coletta et al., 2023), we inject a penalty term
Lpen(xt) enforcing aligning with the given condition C:

Lpen = −β log pϕ(y | xt), (13)
with a hyperparameter β. Then, minimizing Lpen effec-
tively adds −β∇xt

log pϕ(y | xt) into the gradient flow.
This mirrors the classifier-based guidance, bending the up-
dated trajectory towards class y but without retraining θ.
Hence, the final samples adhere to the classifier’s prefer-
ences without additional model training. (Jing et al., 2024)
Example of aggregated function – Sum

Lsum[sj :ej ] =

 ej∑
i=sj

xt,i − Starget[sj :ej ]

2

, (14)

where sj and ej denote the start and end indices of the
segment. The final loss term is:

Lsum = ωt

∑
βsum[sj :ej ]Lsum[sj :ej ], (15)

where βsum[sj :ej ] is the weight for the sum control term,
and ωt is a timestep-dependent weight that yields stronger
guidance in the later stages of the denoising process. For
matching the Csegment, the Csegment can be reparameterized
as Csegment = {(sj , ej , cj , αj ,wj)}Mj=1, where αj is the
expected aggregate statistic, and wj is the weight for the
segment-wise control term.

3.3. Multi-Grained Control

By integrating anchor and statistics controls on point- and
segment-level, Algorithm 1 presents our unified denoising
control framework for generalized DDPMs. Throughout the
denoising process, we interleave point-wise floating mask

control with segment-wise statistical control to gradually
guide the denoising trajectory, requiring no model retraining
or fine-tuning.

Algorithm 1 DDPM Denoising for Multi-Grained TSE
Require: Gradient scale η, trade-off coefficient γ, condi-

tional data xa, time-dependent weight ωt

1: Initialize xT ∼ N (0, I)
2: for t = T to 1 do
3: // Step 1: Predict and Refine Sample
4: [x̂a, x̂b]← pθ(xt, t, θ)
5: L1 = ∥xa − x̂a∥22
6: xt−1 ← N

(
µ(pθ(xt, t, θ),xt),Σ

)
7: L2 = ∥xt−1 − µ(pθ(xt, t, θ),xt)∥22/Σ
8: // Step 2: Statistics Control
9: Lstatistics = ωt

∑
βsum[sj :ej ]Lsum[sj :ej ]

10: x̃0 = pθ(xt, t, θ) + η∇xt
(L1 + γL2 + Lstatistics)

11: xt−1 ← N
(
µ(x̃0,xt),Σ

)
12: // Step 3: Anchor Control
13: xt−1 ← ωtm

ob ⊙ xob
t + (1− ωtm

ob)⊙ xt−1

14: end for

4. Experiments
4.1. Datasets

Our evaluation employs four diverse datasets across real-
world and simulated scenarios. Table 2 summarizes the
dataset specifications. The datasets include three real-world
sources: ETTh 3 for electricity transformer measurements,
fMRI 4 for blood-oxygen-level-dependent time series and
Revenue dataset. The private Revenue dataset is sourced
internally, containing revenue and other two features of hun-
dreds of released video games. The simulated Sines dataset
(Yoon et al., 2019) is generated with varying frequencies,
amplitudes, and phases.

Table 2. Dataset specifications summarizing the data sources, se-
quence lengths, and dimensionality of four used datasets.

Dataset Type Source Length Features

ETTh Real-world Electricity transformer 24 28
fMRI Real-world BOLD time series 24 50
Revenue Real-world Game sales 365 3
Sines Simulated Synthetic waves 24 5

4.2. Experimental Setup

Following the infilling training setup of the Diffusion-TS
framework (Yuan & Qiao, 2024), we adopt the CSDI
(Tashiro et al., 2021) and Diffusion-TS (Yuan & Qiao, 2024)
as fundamental models for our method.

3https://github.com/zhouhaoyi/ETDataset
4https://www.fmrib.ox.ac.uk/datasets/netsim
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For inference, our method allows applying it separately to
each channel, revealing channel dependencies. The training
stage uses the entire dataset in a multivariate time series
aligned with the community. For all experiments, control
signals were applied exclusively to the first channel (c = 0)
to observe inter-channel influences while enabling multi-
channel extensibility. All figures and results are based on the
first channel unless stated otherwise. Training parameters
and inference settings are expressed in Appendix B, such as
choosing anchors and confidence scores.

4.3. Evaluation Metrics

We employ multiple metrics across two key aspects: control
accuracy and distribution quality. For control accuracy, we
measure: (i) Mean Absolute Difference (MAD) between
generated and target values at anchor points, defined as
MAD = 1

N
1
A

∑N
i=1

∑A
j=1

∣∣xcond gen(i,j) − xtarget(i,j)
∣∣; and

(ii) Statistic Control Result to evaluate adherence to target
statistic constraints. For example, the control target func-
tion is the sum of series, we directly observe the actual
sum value change to validate the controllability. For dis-
tribution alignment check, followed by many works (Kong
et al., 2020; Yuan & Qiao, 2024; Park et al., 2024; Ren
et al., 2024), we utilize: (i) Discriminative & Predictive
scores to assess how well-generated sequences replicate
real data patterns, where discriminative score is |accuracy
− 0.5| and predictive score uses mean absolute error (MAE)
between predictions and ground truth; (ii) Context-FID
score which leverages a pre-trained TS2Vec model to mea-
sure distribution-level alignment, with lower scores indi-
cating better similarity; and (iii) Correlational score that
quantifies feature-level covariance preservation. We also
complement these quantitative metrics with Kernel Density
Function visualizations to provide qualitative insights into
distribution alignment.

5. Results
5.1. Point-Wise Anchor Control

We conducted experiments to examine the relationship be-
tween anchor confidence values and prediction accuracy
across different datasets. These experiments aim to validate
our hypothesis that higher confidence values lead to more
precise anchoring points and verify the behaviour at extreme
confidence values (0.01 and 1.0).

Table 3 with the Diffusion-TS backbone demonstrates that
increasing confidence values leads to a consistent MAD
reduction across all datasets, ultimately converging to 0.0
at maximum confidence. This convergence at confidence
= 1.0 validates our theoretical guarantee that maximum
confidence forces the anchor point to be a fixed point. The
monotonic and linear decrease of MAD with increasing

confidence is visualized in Figure 2. The upper Figure 2
further confirm the theorem about linear controllability.

The second finding reveals that extreme target values (0.1 or
1.0) produce larger MAD values than moderate confidence
levels (e.g., 0.5) across different datasets. For instance,
on the fMRI Dataset, the MAD at atarget = 0.1 is 0.113,
while at atarget = 0.8, it reduces to 0.052. This pattern,
visible in Table 3, supports our hypothesis about the trade-
off between very low and very high confidence values in
anchor point selection. Comparing the MAD of the Original
Dataset and Unconditional across the three target values, the
anchor control approach demonstrates a smaller MAD even
with a confidence score of 0.01. This indicates that anchor
control helps generate time series data closer to the target
value at a specified time. Furthermore, the pattern of largest
and smallest MAD values aligns with those in the original
and unconditional versions, suggesting that anchor control
preserves the original distribution and MAD for each dataset
while reducing its MAD magnitude.
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Figure 2. Anchor Control The influence of confidence across
datasets. The lower figure is examined when enabling the dy-
namic error adjustment and time-depend weight, while the upper
figure is not. “AllPeaks” means the averaged all experiments of
anchor control. The model is Diffusion-TS, more in Appendix C.4

.
5.2. Segement-Wise Statistical Control

Our experiments investigate two key aspects of the aggre-
gated statistic adjustment mechanism: (1) the effectiveness
of different target values in steering the segment sum and se-
quence sums, and (2) the impact of weight parameters on
control strength. These experiments aim to validate whether
our method can reliably guide sequences toward desired
sum targets while maintaining data fidelity.
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Table 3. Anchor Control MAD of the given anchor indices in
different setups of different confidence levels and target values.

ETTh Dataset

Target Value \Confidence Original 0.00 (Uncon) 0.01 0.50 1.00 Average

0.1 .0661 .0614 .0233 .0038 .0000 .0090
0.8 .7201 .7363 .0734 .0400 .0000 .0378
0.8 .5775 .6021 .1293 .0622 .0000 .0638
1.0 .7775 .8021 .2219 .1007 .0000 .1075

Average .4988 .5102 .1274 .0594 .0000

fMRI Dataset

0.1 .4423 .4409 .0288 .0050 .0000 .0113
0.8 .2620 .2632 .0129 .0027 .0000 .0052
1.0 .4577 .4591 .0163 .0027 .0000 .0063

Average .3873 .3877 .0193 .0035 .0000

Sine Dataset

0.1 .6530 .6617 .2511 .1116 .0000 .1209
0.8 .1466 .1455 .0700 .0377 .0000 .0359
1.0 .2470 .2383 .1179 .0588 .0000 .0589

Average .3489 .3485 .1463 .0694 .0000

Whole Sequence Sum As shown in Table 4, the con-
trolled sequences consistently respond to different target
values across all datasets. For the Revenue dataset, when
targeting 150.0, the sequence sum increases significantly
from 76.6 to 117.9, while targeting -100.0 reduces it to 52.7.
Similar patterns are observed in other datasets - ETTh shows
controlled variation from 1.5 to 11.1 (100) and 0.8 (-150),
etc. Moreover, Revenue shows increasing steps: +2.705
from -100.0 to 20.0, +3.206 from 20.0 to 50.0, and +59.283
from 50.0 to 150.0. Both patterns demonstrate fine-grained
control for smaller adjustments and the ability to make sub-
stantial changes when needed. Figures in Appendix D.1
visualize more controlled time series with different targets.

The weight parameter experiments reveal that varying
weights from 1 to 100 produces only minor changes in the
resulting sums. Target value rather than the control weight is
the primary driver of loss-based control performance. Then,
the weight parameters may be simplified in practical appli-
cations since they do not contribute substantially to control
performance. The normalized trends in Figure 5.2 further
support this observation.

Table 4. Sum Control Average summation value for various
weights of sum control. “Original”: the original training set; “Un-
con”: Unconditional generated samples. The largest and smallest
MAD are labelled in each dataset.(Diffusion-TS)

.

Dataset Original Uncon Target Value
-100.0 20.0 50.0 150.0

Sine 17.881 18.086 7.114 20.146 20.991 21.031
Revenue 80.194 76.619 52.675 55.380 58.585 117.868

ETTh 1.924 1.535 0.802 8.502 10.323 11.102
fMRI 12.990 12.980 4.675 17.192 19.811 20.508

Dataset Original Uncon Weight Value
1 10 50 100

Sine 17.881 18.086 7.110 7.114 7.117 7.115
Revenue 80.194 76.619 52.767 52.675 52.741 52.725

ETTh 1.924 1.535 0.798 0.802 0.796 0.800
fMRI 12.990 12.980 4.678 4.675 4.677 4.682

Segment Sum To evaluate segment-wise control,
we tested 3 segments: (0.2L, 0.4L), (0.4L, 0.6L),
(0.6L, 0.8L) with target value 150. Figure 4 shows that
each controlled segment demonstrates increased sum
adjustments. The effectiveness is particularly visible in
the ETTh and Revenue datasets. The controlled segments
exhibit clear increases in area under the curve when
targeting higher sums with Diffusion-TS, while the effect
of CSDI controlling is not obvious.

5.3. Distribution Alignment

Table E demonstrates that Diffusion-TS achieves better dis-
tribution matching than CSDI in unconditional generation
across all datasets, with scores approaching 0, particularly
for ETTh (0.034) and Sines (0.019). However, both Anchor
and Statistics controls lead to increased divergence, suggest-
ing a trade-off between control and distribution preservation.
The comprehensive table can be found in Appendix C.3.

Table 5. Discriminative score for our method on CSDI and
Diffusion-TS (DTS). The lower the score, the more similar the
distribution of generated time series with original datasets.

Model Control ETTh Revenue fMRI Sines

Our - CSDI
Unconditional 0.361±0.007 0.245±0.164 0.306±0.021 0.017±0.007
Anchor 0.470±0.003 0.313±0.046 0.482±0.004 0.430±0.038
Statistics 0.373±0.007 0.272±0.055 0.377±0.019 0.034±0.007

Our - DTS
Unconditional 0.034±0.026 0.209±0.185 0.089±0.033 0.019±0.008
Anchor 0.437±0.004 0.393±0.030 0.495±0.001 0.460±0.011
Statistics 0.477±0.003 0.426±0.032 0.498±0.001 0.451±0.029

5.4. Time Efficiency Analysis

Our time efficiency analysis from Table 6 reveals CSDI’s
computational advantage, processing samples 3-9x faster
than Diffusion-TS across all datasets. The runtime scales pri-
marily with sequence length, as evidenced by the Revenue
dataset’s higher processing times. Notably, both anchor and
statistics-based controls add minimal computational over-
head, maintaining consistent performance across control
configurations. Feature dimensionality has a secondary but
observable impact on processing time.

Table 6. Time efficiency analysis of our method compared on CSDI
and Diffusion-TS (DTS). The results show the average time per
sample for each dataset and control configuration. 500 examples
per batch with an average of 5 batches.

Method Dataset Time Per Sample (ms)
Name Seq Features Uncon Anchor Statistics

Our - CSDI

Energy 24 28 0.064±0.000 0.064±0.004 0.064±0.001
fMRI 24 50 0.116±0.000 0.115±0.001 0.117±0.001

Revenue 365 3 1.000±0.001 1.016±0.022 1.001±0.013
Sines 24 5 0.018±0.000 0.017±0.001 0.018±0.001

Our - DTS

Energy 24 28 0.278±0.017 0.304±0.002 0.292±0.001
fMRI 24 50 0.376±0.154 0.232±0.883 0.549±0.274

Revenue 365 3 9.163±0.411 9.580±5.126 9.223±0.044
Sines 24 5 0.046±0.015 0.059±0.020 0.048±0.001
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Figure 3. Normalized comparison of sum control effectiveness across datasets. Values are scaled relative to dataset-specific ranges to
enable direct comparison between different domains. Lines show progressive convergence toward target sums. (Diffusion-TS)
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Figure 4. Segment-wise sum control results for different datasets.
The shaded area represents the controlled segment, with the corre-
sponding average sum value across different time segments. The
datasets from left to right are: ETTh, Revenue, fMRI and Sine.

6. Related Work
Traditional generative tasks employed GANs (Wiese et al.,
2020; Nguyen & Quanz, 2021; Yoon et al., 2019; Baasch
et al., 2021), VAEs (Desai et al., 2021; Lee et al., 2023),
Diffusion Models (Ang et al., 2023; Tashiro et al., 2021;
Yang et al., 2023; Cao et al., 2024; Tian et al., 2024; Ren
et al., 2024; Adib et al., 2024; Jing et al., 2024; Zhou et al.,
2023), and Flow Matching (Hu et al., 2024), establishing
foundational techniques for synthetic time series generation.

6.1. Time Series Generation Models

TimeGAN (Yoon et al., 2019) introduced temporal-aware ad-
versarial training, while subsequent works like C-TimeGAN
(Baasch et al., 2021) and CGAN-TS (Miao et al., 2021)
incorporated conditional generation capabilities. Recent
Transformer-based architectures (Sommers et al., 2024; Wen
et al., 2023) have further enhanced representation capabil-
ities for temporal patterns. Early control mechanisms fo-
cused on global attributes through models like TimeVAE
(Desai et al., 2021), TimeGAN (Yoon et al., 2019), and C-
TimeGAN (Baasch et al., 2021). Recent advances include
hierarchical approaches (Torres et al., 2021) and attention-
based mechanisms (Liu & Wang, 2024). Notably, CGAN-
TS (Miao et al., 2021) and ControlTS (Wang et al., 2024)

introduced attribute-based and temporal feature control.

6.2. Diffusion Models for Time Series

The adaptation of diffusion models to time series data has
seen rapid advancement through several key developments.
Early works like TimeGrad (Rasul et al., 2021) and CSDI
(Tashiro et al., 2021) established the viability of diffusion
models for temporal data, particularly in handling missing
value imputation and uncertainty quantification. These foun-
dations led to architectural innovations including TimeDiT
(Cao et al., 2024), which introduced specialized temporal
attention mechanisms, and Diff-MTS (Ren et al., 2024),
which enhanced multivariate time series generation through
improved cross-channel modeling.

Recent advances have focused on both architectural im-
provements and control mechanisms. The Latent Diffusion
Transformer (Feng et al., 2024) demonstrated efficient gen-
eration through compressed latent spaces, while RATD (Liu
et al., 2024) introduced robust attention mechanisms for
handling temporal dependencies. Score-CDM (Zhang et al.,
2024) and DiffusionBridge (Park et al., 2024) advanced
controlled generation through score-based approaches and
bridge construction methods respectively. These develop-
ments have enabled successful applications across diverse
domains, from healthcare monitoring (Adib et al., 2024) and
industrial systems (Tian et al., 2024) to financial forecasting
(Yang et al., 2023; Hamdouche et al., 2023).

While existing methods show promise, they primarily focus
on global trend control and distribution matching, lacking,
fine-grained control at the individual timestamp level except
DiffTime and Guided-DiffTime (Coletta et al., 2023), work-
ing on the point-wise constrained time series generation.
However, their points control needs additional training.

7. Conclusion
We present the COCKTAILEDIT for generalized Time Series
Editing that enables fine-grained control and global statisti-
cal manipulation without model retraining. It is achieved via
float masking and score-based guidance for statistical prop-
erties. The interleaving nature of the two mechanisms allows
them to be seamlessly combined, enabling sophisticated edit-
ing operations that respect both fine-grained constraints and
coarse-grained properties. This makes our framework par-
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ticularly suitable for real-world applications where domain
experts need to incorporate specific knowledge while main-
taining overall statistical validity. Figure G demonstrates the
practical interactive editing interface to enable the intuitive
manipulation of temporal data like Photoshop. The con-
trol mechanism is not perfect and the obvious distribution
drift still exists. Our method can be further improved by
incorporating more advanced control mechanisms and care-
fully considering the trade-off between control precision
and distribution preservation.

Impact Statement
Our work introduces controlled generation techniques for
time series data that could significantly impact both research
and practical applications. This framework enables precise
manipulation of temporal data through anchor points and sta-
tistical controls, potentially transforming how we approach
scenario analysis, forecasting, and anomaly detection in
fields like financial modeling, healthcare monitoring, and
energy systems.

However, we acknowledge important limitations and risks.
The trade-off between control precision and distribution
preservation requires careful consideration in practical ap-
plications. Additionally, while our method shows promise
on most datasets, its consistent failure on revenue data high-
lights the need for further research into domain-specific
adaptations.

Looking forward, this work opens new directions for in-
vestigating the controlled generation of temporal data, with
potential applications in simulation, testing, and data aug-
mentation. We hope our framework will serve as a founda-
tion for developing more sophisticated and reliable methods
for time series manipulation while emphasizing the impor-
tance of responsible development and application of such
technologies.
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and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
c9efe5f26cd17ba6216bbe2a7d26d490-Paper.
pdf.

Yuan, X. and Qiao, Y. Diffusion-ts: Interpretable diffusion
for general time series generation. March 2024. doi:
10.48550/ARXIV.2403.01742.

Zhang, S., Wang, S., Miao, H., Chen, H., Fan, C., and Zhang,
J. Score-cdm: Score-weighted convolutional diffusion
model for multivariate time series imputation. May 2024.
doi: 10.48550/ARXIV.2405.13075.

Zhou, L., Lou, A., Khanna, S., and Ermon, S. Denoising
diffusion bridge models. September 2023. doi: 10.48550/
ARXIV.2309.16948.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf


CocktailEdit: The Multi-Grained Time Series Editing Approach

A. Methodology Additional Details
A.1. Summary of Variants

Table 7. Summary of variables and their Meanings
Symbol Meaning
N Number of time series
xi ∈ RL×D i-th time series, length L, dimension D
S = {xi}Ni=1 Training dataset of time series
θ Model parameters of fθ
C Prior/conditioning input
T Total forward/backward diffusion steps
K Set of number of gradient steps per diffusion step
βk ∈ [0, 1] Noise variance schedule
xt Noisy sample at diffusion step t
ti Time index in the sample x
vi Corresponding y value of the time index in sample x
µθ, σ

2
k Mean and variance in reverse diffusion

Ω(x),Ω(x) Observed and missing indices
xob,xta Observed and target parts of a time series
m ∈ [0, 1]L×D Confidence/float mask
ωt Time-dependent weight in reverse steps
Cpoint Point-wise control with confidence
Csegment Segment-wise control constraints
Lsum,Lpen,Lstatistics Loss terms enforcing constraints
γ, η, βsum[sj :ej ] Additional scale factors for guidance

A.2. DDPM and Conditional Generation

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) approximate a data distribution q(x) by gradually
adding noise to data samples and then learning to reverse this noising process. The forward process is defined as a Markov
chain:

q(x1:K | x0) =

K∏
k=1

q(xk | xk−1), (16)

q(xk | xk−1) = N
(
xk;

√
1− βk xk−1, βkI

)
, (17)

where βk ∈ [0, 1] controls the noise variance at each step. In closed form, one may sample the noisy state xk from

q(xk | x0) = N
(
xk;
√
αk x0, (1− αk)I

)
, (18)

with αk =
∏k

i=1(1− βi). The reverse process is modeled by a parameterized Gaussian:

pθ(xk−1 | xk) = N
(
xk−1;µθ(xk, k), σ

2
kI
)
. (19)

The loss can be simplified by predicting either the noiseless data or the added noise. In practice, predicting noise often
improves performance, leading to

µϵ(xk, k) =
1√

1− βk

(
xk −

βk√
1− αk

ϵθ(xk, k)
)
, (20)

L = E
[
∥ϵ− ϵθ(xk, k)∥2

]
, (21)

where ϵ ∼ N (0, I). (Ho et al., 2020; Meijer & Chen, 2024)
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Figure 5. Time-dependent weight schedule during denoising process. The exponential decay (γ = 5.0) provides stronger control signals
in later timesteps while allowing smoother adjustments near completion.

A.3. Time-Dependent Weight

A.4. Formal Proof of Float Mask Replacing

Proof. Let p(x) be the jointly trained diffusion model over both observed and missing dimensions, and let p(xta | xob) be
the target conditional distribution. Denote pt(xt

ob, x
t
ta) as the distribution of (xt

ob, x
t
ta) at iteration t. We show that as t→ 0,

pt(x
t
ta | xt

ob) converges to p(xta | xob).

I. Forward-Process Marginals. By construction, xt
ob at each step is drawn from the forward process q(xt

ob | x0
ob), which is

a Gaussian transition that preserves the exact marginal of the known dimensions xob. Formally, for each t,

xt
ob ∼ N

(√
ᾱt x

0
ob, (1− ᾱt)I

)
.

Hence, pt(xt
ob) remains consistent with the correct marginal distribution

∏
Ω(x) p(xob).

II. Denoising of Missing Entries. The reverse step for missing entries xt
ta is governed by

xt
ta ← xt+1

ta −
√
βt∇xt+1

ta
log pθ(x

t+1
ta | xt+2

ta , xt
ob).

As shown in (Song et al., 2020b), iteratively applying the reverse diffusion steps in this score-based framework converges to
sampling from p(xta | xt

ob).

III. Replace and Float-Mask Consistency. Whether we replace xt
ob completely or blend it with a float mask m:

xt = m⊙ xt
ob + (1−m)⊙ xt

ta,

the observed indices remain consistent with their forward-sampled values. This ensures that at every iteration, the joint
distribution respects the known-data constraints. The 0.0 value in masks means no restriction on this point, and 1.0 means
the fixed anchor point.

IV. Convergence to the Conditional. Consider pt(xt
ta | xt

ob). By the score-based argument (the forward-reverse chain
forming a time-indexed Markov process), the mixture of denoising steps and partial resets of observed entries yields

lim
t→0

pt(x
t
ta | xt

ob) = p(xta | xob),

where the convergence follows from the fact that each reverse diffusion step corrects the noise injected in the forward pass,
conditioned on the known xt

ob.

Thus, replace-based or float-mask imputation each preserves xob’s marginals and iteratively refine xta until the distribution
of the missing entries matches p(xta | xob).
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Implementation Details The float mask m can be adjusted to control the influence of observed data on the imputed
sequence. By iterative sampling from the diffusion model and applying the floating mask, we can generate time series data
that respects observed values while conforming to the correct conditional distribution.

1. Initialize xT from Gaussian noise.

2. For t = T down to 1:

• Forward-process sampling (for xt
ob): xt

ob ∼ q
(
xt
ob | x0

ob

)
.

• Denoise missing parts (for xt
ta): perform gradient step using log pθ.

• Apply float mask (optional): fuse observed and imputed regions via m.

A.5. Improved Sampling

(Jing et al., 2024) mentioned the sampling algorithm follows reconstruction-guided conditional diffusion with adaptive
gradient steps based on timestep t. Early timesteps receive more control updates to guide generation, while later stages use
fewer updates to optimize efficiency. For balances quality with speed by focusing gradient corrections where they have the
most impact - during the initial creative stages rather than final smoothing. The following is the used sampling Algorithm 2.

Algorithm 2 Improved DDPM Denoising for Multi-Grained TSE
Require: Gradient scale η, trade-off coefficient γ, conditional data xa, time-dependent weight ωt, times set K

1: Initialize xT ∼ N (0, I)
2: for t = T to 1 do
3: for k = 1 to K[t] do
4: [x̂a, x̂b]← pθ(xt, t, θ)
5: L1 = ∥xa − x̂a∥22
6: xt−1 ← N

(
µ(pθ(xt, t, θ),xt),Σ

)
7: L2 = ∥xt−1 − µ(pθ(xt, t, θ),xt)∥22/Σ
8: Lstatistics = ωt

∑
βsum[sj :ej ]Lsum[sj :ej ]

9: x̃0 = pθ(xt, t, θ) + η∇xt
(L1 + γL2 + Lstatistics)

10: end for
11: xt−1 ← N

(
µ(x̃0,xt),Σ

)
12: xt−1 ← ωtm

ob ⊙ xob
t + (1− ωtm

ob)⊙ xt−1

13: end for
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B. Experiment Additional Details

Table 8. Training hyperparameters and settings for each dataset.

Method Dataset Training Inference
Name Seq Length Features LR Train Steps Batch Szie DDPM Timesteps

Our - CSDI

Energy 24 28 1.00E-03 25000 64 200
fMRI 24 50 1.00E-03 15000 64 200

Revenue 365 3 2.00E-03 2230 64 200
Sines 24 5 1.00E-03 12000 128 50

Our - Diffusion-TS

Energy 24 28 1.00E-05 25000 64 1000
fMRI 24 50 1.00E-05 15000 64 1000

Revenue 365 3 2.00E-05 2230 64 500
Sines 24 5 1.00E-05 12000 128 500

We run all training and inferencing of all experiments with NVIDIA L40S GPUs. All experiments are fixed on the random
seed with 2024. Table 8 summarizes the training hyperparameters for each dataset and method. We use the Adam optimizer
with a learning rate of 1.00× 10−3 for CSDI and 1.00× 10−5 for Diffusion-TS. The training steps are set to 25,000 for
CSDI and 15,000 for Diffusion-TS. The batch size is 64 for CSDI and 128 for Diffusion-TS. The number of diffusion steps
is set according to the different datasets.

For anchor point control, we placed anchor targets at normalized values vanchor ∈ {0.1, 0.8, 1.0} at relative temporal
positions tanchor ∈ {0.1L, 0.3L, 0.5L, 0.7L, 0.9L}. The confidence levels are set to canchor = {0.01, 0.50, 1.0} at the
corresponding anchor indices, and the other positions were set to 0.0 during mask converting.

For the segment-wise control, we test on segments {(s, e)} ={(0.2L, 0.4L), (0.4L, 0.6L), (0.6L, 0.8L),
(0, L)}, (0, L) represents the whole sequence. We choose “sum” as the aggregated function, then αsum ∈
{−100, 20, 50, 100} as the targeted aggregated statistics, weight βsum ∈ {1, 10, 50, 100}. We note that baseline sums vary
significantly between datasets due to sequence length and data scaling, we will include the various sequence length results,
such L ∈ {96, 192, 384} in the camera-ready version.

C. Anchor Control
C.1. Demonstrates

The following figures demonstrate the effectiveness of anchor control across different datasets varying this confidence and
target value with Diffusion-TS and CSDI. We can see as the confidence increases, the model respects the anchor points more
strictly.

C.1.1. PURE FLOAT MASK CONTROL (DIFFUSION-TS)
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Figure 6. Demonstration of Anchor Control in ETTh datasets with multiple anchor points and confidences
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Figure 7. Demonstration of Anchor Control in fMRI datasets with multiple anchor points and confidences.
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Figure 8. Demonstration of Anchor Control in Revenue datasets with multiple anchor points and confidences
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Figure 9. Demonstration of Anchor Control in Synthetic sine wave datasets with multiple anchor points and confidences

C.1.2. FLOAT MASK CONTROL WITH EXTENSIONS (DIFFUSION-TS)
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Figure 10. Demonstration of Anchor Control in ETTh datasets with multiple anchor points and confidences

0.2

0.4

0.6

0.8

1.0

Va
lu

e

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Pe
ak

Va
lu

e
=

0.
10

0.2

0.4

0.6

0.8

Va
lu

e

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

Pe
ak

Va
lu

e
=

0.
80

0 5 10 15 20
Time

0.2

0.4

0.6

0.8

1.0

Va
lu

e

0 5 10 15 20
Time

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Time

0.2

0.4

0.6

0.8

1.0

Pe
ak

Va
lu

e
=

1.
00

Confidence Increases 

 T
ar

ge
t 

An
ch

or
 V

al
ue

 In
cr

es
se

s

Figure 11. Demonstration of Anchor Control in fMRI datasets with multiple anchor points and confidences.
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Figure 12. Demonstration of Anchor Control in Revenue datasets with multiple anchor points and confidences
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Figure 13. Demonstration of Anchor Control in Synthetic sine wave datasets with multiple anchor points and confidences
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C.1.3. FLOAT MASK CONTROL WITH EXTENSIONS (CSDI)
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Figure 14. Demonstration of Anchor Control in ETTh datasets with multiple anchor points and confidences
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Figure 15. Demonstration of Anchor Control in fMRI datasets with multiple anchor points and confidences.
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Figure 16. Demonstration of Anchor Control in Revenue datasets with multiple anchor points and confidences
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Figure 17. Demonstration of Anchor Control in Synthetic sine wave datasets with multiple anchor points and confidences

C.2. KED of Anchor Control

The following plots of Kernel Density Estimation (KDE) clearly demonstrate how the distribution peaks (purple dash line)
shift towards the anchor points as confidence increases. For instance, in the ETTh dataset, the most pronounced shift occurs
at anchor points under the highest confidence level. The model generates sequences that accurately respect anchor points
while preserving the dataset’s inherent distributional characteristics. In Figure C.2.3’s middle row, where the target value
is 0.8, increasing confidence levels cause the peaks (y-value density) of controlled results (purple line) to intensify and
converge toward the target value. This pattern is consistently observed across all datasets.

C.2.1. PURE FLOAT MASK CONTROL (DIFFUSION-TS)
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Figure 18. KDE analysis of ETTh dataset generation with anchor points.
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Figure 19. KDE analysis of fMRI dataset generation with anchor points.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

De
ns

ity

Target = 0.1, Confidence = 0.01
Original
Unconditional
Controlled
Target = 0.1
Confidence = 0.01
Anchor: 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Target = 0.1, Confidence = 0.5
Original
Unconditional
Controlled
Target = 0.1
Confidence = 0.5
Anchor: 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Target = 0.1, Confidence = 1.0
Original
Unconditional
Controlled
Target = 0.1
Confidence = 1.0
Anchor: 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Target = 0.8, Confidence = 0.01
Original
Unconditional
Controlled
Target = 0.8
Confidence = 0.01
Anchor: 0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Target = 0.8, Confidence = 0.5
Original
Unconditional
Controlled
Target = 0.8
Confidence = 0.5
Anchor: 0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Target = 0.8, Confidence = 1.0
Original
Unconditional
Controlled
Target = 0.8
Confidence = 1.0
Anchor: 0.8

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Target = 1.0, Confidence = 0.01
Original
Unconditional
Controlled
Target = 1.0
Confidence = 0.01
Anchor: 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Target = 1.0, Confidence = 0.5
Original
Unconditional
Controlled
Target = 1.0
Confidence = 0.5
Anchor: 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Target = 1.0, Confidence = 1.0
Original
Unconditional
Controlled
Target = 1.0
Confidence = 1.0
Anchor: 1.0

Confidence Increases 

 T
ar

ge
t 

An
ch

or
 V

al
ue

 In
cr

es
se

s

Figure 20. KDE analysis of Revenue dataset generation with anchor points.
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Figure 21. KDE analysis of synthetic sine wave dataset generation with anchor points.

C.2.2. FLOAT MASK CONTROL WITH EXTENSIONS (DIFFUSION-TS)
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Figure 22. KDE analysis of ETTh dataset generation with anchor points.
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Figure 23. KDE analysis of fMRI dataset generation with anchor points.
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Figure 24. KDE analysis of Revenue dataset generation with anchor points.
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Figure 25. KDE analysis of synthetic sine wave dataset generation with anchor points.

C.2.3. FLOAT MASK CONTROL WITH EXTENSIONS (CSDI)
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Figure 26. KDE analysis of ETTh dataset generation with anchor points.
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Figure 27. KDE analysis of fMRI dataset generation with anchor points.
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Figure 28. KDE analysis of Revenue dataset generation with anchor points.
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Figure 29. KDE analysis of synthetic sine wave dataset generation with anchor points.

C.3. Supplement Metrics

The Discriminative, Predictive, Context-FID, and Correlational scores help quantify distribution shifts under anchor control.
Table C.3 demonstrates that all metrics increase significantly after applying control, indicating that the control signals
effectively influence the generated time series. But our method makes them more distinguishable from the original
distribution, which is the improved direction for following research.

Table 9. Supplemental metrics for anchor control performance across different datasets and target values. The results show discriminative,
predictive, context-FID, and correlational scores for each dataset and control configuration. Lower scores indicate better performance.

Metrics Control Signal Dataset
ETTh Revenue fMRI Sine

Discriminative
Score

(Lower is
Better)

Unconditional 0.103±0.042 0.082±0.093 0.141±0.037 0.031±0.023
Confidence=0.01 0.497±0.005 0.382±0.267 0.500±0.000 0.457±0.027
Confidence=0.5 0.496±0.006 0.282±0.323 0.499±0.001 0.494±0.004
Confidence=1.0 0.498±0.001 0.009±0.025 0.498±0.000 0.374±0.264

Predictive
Score

(Lower is
Better)

Unconditional 0.256±0.002 0.065±0.026 0.103±0.002 0.094±0.000
Confidence=0.01 0.302±0.008 0.181±0.002 0.134±0.010 0.120±0.007
Confidence=0.5 0.305±0.014 0.179±0.005 0.141±0.010 0.118±0.012
Confidence=1.0 0.335±0.019 0.175±0.009 0.139±0.009 0.116±0.008

Context-FID
Score

(Lower is
Better)

Unconditional 0.108±0.007 1.230±0.284 0.260±0.024 0.034±0.005
Confidence=0.01 7.797±0.644 4.654±1.389 15.671±2.920 4.169±1.139
Confidence=0.5 6.973±1.514 5.921±0.711 15.463±1.888 10.842±2.103
Confidence=1.0 7.856±1.326 7.083±0.512 13.854±0.830 8.906±1.168

Correlational
Score

(Lower is
Better)

Unconditional 2.313±0.743 0.038±0.013 2.672±0.091 0.066±0.009
Confidence=0.01 9.321±0.764 0.122±0.007 16.699±0.453 0.255±0.013
Confidence=0.5 8.445±0.675 0.119±0.006 15.488±0.174 0.468±0.016
Confidence=1.0 9.640±0.835 0.121±0.011 17.259±0.434 0.345±0.034
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C.4. Anchor Control Analysis

Here, we demonstrate again the complete aggregated Mean Absolute Deviation (MAD) of anchor control across all datasets,
providing solid evidence for the effectiveness of anchor control in maintaining anchor points.

C.4.1. PURE FLOAT MASK CONTROL
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Figure 30. Different combinations of confidence levels and target values across all datasets. (Diffusion-TS)

C.4.2. FLOAT MASK CONTROL WITH EXTENSIONS
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Figure 31. Different combinations of confidence levels and target values cross all datasets. (Diffusion-TS)
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Figure 32. Different combinations of confidence levels and target values across all datasets. (CDSI)

D. Statistic Control
This section provides supplementary materials for analyzing statistical control, focusing on both Sum Control and Segment-
Wise Sum Control.
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D.1. Demonstration

The following figures demonstrate the effectiveness of sum control across different datasets. As the target value increases
(from left to right in each row), the model generates sequences that successfully adhere to the sum constraints while
maintaining the dataset’s inherent distributional properties. For segment-wise sum control, the results consistently show
that the model tends to increase the overall sequence sum value, which aligns with the objective of preserving the original
distribution learned from the dataset.

D.1.1. WHOLE TIME SERIES SUMMATION CONTROL (DIFFUSION-TS)
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Figure 33. Demonstration of Sum Control on ETTh dataset.
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Figure 34. Demonstration of Sum Control on fMRI dataset.
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Figure 35. Demonstration of Sum Control on Revenue dataset.
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Figure 36. Demonstration of Sum Control on synthetic sine wave dataset.
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D.1.2. WHOLE TIME SERIES SUMMATION CONTROL (CSDI)
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Figure 37. Demonstration of Sum Control on ETTh dataset.
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Figure 38. Demonstration of Sum Control on fMRI dataset.
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Figure 39. Demonstration of Sum Control on Revenue dataset.
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Figure 40. Demonstration of Sum Control on synthetic sine wave dataset.
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D.1.3. SEGMENT WISE SUM CONTROL (DIFFUSION-TS)
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Figure 41. Demonstration of Segment-Wise Sum Control on ETTh dataset.

0 5 10 15 20
Time

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Target Segment: [4:8]
Sum: 3.544

0 5 10 15 20
Time

0.0

0.2

0.4

0.6

0.8

1.0 Target Segment: [8:12]
Sum: 3.446

0 5 10 15 20
Time

0.0

0.2

0.4

0.6

0.8

1.0 Target Segment: [12:16]
Sum: 3.280

Sum Control Demonstration on fMRI Dataset

Figure 42. Demonstration of Segment-Wise Sum Control on fMRI dataset.
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Figure 43. Demonstration of Segment-Wise Sum Control on Revenue dataset.
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Figure 44. Demonstration of Segment-Wise Sum Control on synthetic sine wave dataset.

30



CocktailEdit: The Multi-Grained Time Series Editing Approach

D.1.4. SEGMENT WISE SUM CONTROL (CSDI)
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Figure 45. Demonstration of Segment-Wise Sum Control on ETTh dataset.
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Figure 46. Demonstration of Segment-Wise Sum Control on fMRI dataset.
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Figure 47. Demonstration of Segment-Wise Sum Control on Revenue dataset.
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Figure 48. Demonstration of Segment-Wise Sum Control on synthetic sine wave dataset.
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D.2. Kernel Density Estimate of Sum Control

Similar to the KDE analysis of anchor control, we present KDE analysis for sum control across different datasets. The KDE
peaks of controlled output (purple line) shift rightward compared to original and unconditional distributions, confirming that
controlled sequences achieve higher sum values while preserving dataset-specific distributional characteristics. While this
pattern does not persist consistently across different control weights and need to be further investigated.

D.2.1. KDE OF TOTAL SUM CONTROL (DIFFUSION-TS)
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Figure 49. Kernel density estimation analysis of Revenue dataset under varying sum control targets. Top: Target analysis showing control
effectiveness. Bottom: Weight analysis showing control effectiveness.
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Figure 50. Kernel density estimation visualization for ETTh dataset. Top: Sum control analysis. Bottom: Weight analysis.
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Figure 51. Kernel density estimation analysis of fMRI dataset. Top: Sum control analysis. Bottom: Weight analysis.
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Figure 52. Kernel density estimation analysis of synthetic sine wave dataset. Top: Sum control analysis. Bottom: Weight analysis.
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D.2.2. KDE OF TOTAL SUM CONTROL (CSDI)
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Figure 53. Kernel density estimation analysis of Revenue dataset under varying sum control targets. Top: Target analysis showing control
effectiveness. Bottom: Weight analysis showing control effectiveness.
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Figure 54. Kernel density estimation visualization for ETTh dataset. Top: Sum control analysis. Bottom: Weight analysis.
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Figure 55. Kernel density estimation analysis of fMRI dataset. Top: Sum control analysis. Bottom: Weight analysis.
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Figure 56. Kernel density estimation analysis of synthetic sine wave dataset. Top: Sum control analysis. Bottom: Weight analysis.

D.3. Averaged Sum Change Over All Segments

For the following aggregated sum change over all segments, we calculate the averaged value over segments for each dataset,
with a target sum value of 150 for each segment.

D.3.1. VALUE CHANGE OF SEGMENT SUM CONTROL (DIFFUSION-TS)
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Figure 57. Segmented Summation Control on Revenue dataset.

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Original

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 4 to 8
Original
Controlled
Controlled Segment

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 8 to 12

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 12 to 16

Figure 58. Segmented Summation Control on ETTh dataset.

35



CocktailEdit: The Multi-Grained Time Series Editing Approach

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Original

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 4 to 8
Original
Controlled
Controlled Segment

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 8 to 12

0-4 4-8 8-12 12-16 16-24
Time

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Controlled From 12 to 16

Figure 59. Segmented Summation Control on fMRI dataset.
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Figure 60. Segmented Summation Control on Sine dataset.

D.3.2. VALUE CHANGE OF SEGMENT SUM CONTROL (CSDI)
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Figure 61. Segmented Summation Control on Revenue dataset.
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Figure 62. Segmented Summation Control on ETTh dataset.
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Figure 63. Segmented Summation Control on fMRI dataset.
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Figure 64. Segmented Summation Control on Sine dataset.

D.4. Supplement Metrics

The Discriminative, Predictive, Context-FID, and Correlational scores help quantify distribution shifts under sum control.
Table D.4 demonstrates that all metrics increase significantly after applying control, indicating that the control signals
effectively influence the generated time series and make them more distinguishable from the original distribution.

Table 10. Supplemental metrics for sum control performance across different datasets and target values. The results show discriminative,
predictive, context-FID, and correlational scores for each dataset and control configuration. Lower scores indicate better performance.

Metrics Control Signal Dataset
ETTh Revenue fMRI Sine

Discriminative
Score

(Lower is
Better)

Unconditional 0.103±0.042 0.082±0.093 0.141±0.037 0.031±0.023
Sum Target = 150 0.499±0.002 0.455±0.069 0.500±0.000 0.453±0.117
Sum Target = 50 0.499±0.002 0.445±0.062 0.500±0.000 0.477±0.031
Sum Target = 20 0.488±0.005 0.455±0.056 0.500±0.000 0.244±0.100

Sum Target = -100 0.476±0.015 0.427±0.064 0.500±0.000 0.500±0.000

Predictive
Score

(Lower is
Better)

Unconditional 0.256±0.002 0.065±0.026 0.103±0.002 0.094±0.000
Sum Target = 150 0.465±0.008 0.146±0.066 0.113±0.001 0.099±0.009
Sum Target = 50 0.418±0.007 0.107±0.006 0.108±0.001 0.108±0.040
Sum Target = 20 0.286±0.004 0.104±0.007 0.102±0.001 0.094±0.000

Sum Target = -100 0.289±0.005 0.106±0.009 0.116±0.003 0.111±0.008

Context-FID
Score

(Lower is
Better)

Unconditional 0.108±0.007 1.230±0.284 0.260±0.024 0.034±0.005
Sum Target = 150 10.608±1.651 2.648±0.927 2.740±0.480 4.346±0.818
Sum Target = 50 8.943±1.277 2.408±0.245 2.187±0.115 2.827±0.389
Sum Target = 20 3.129±0.473 3.533±0.849 0.614±0.111 0.884±0.281

Sum Target = -100 5.049±0.537 5.056±0.459 3.122±0.389 19.805±1.737

Correlational
Score

(Lower is
Better)

Unconditional 2.313±0.743 0.038±0.013 2.672±0.091 0.066±0.009
Sum Target = 150 15.328±0.511 0.098±0.010 9.387±0.149 0.297±0.012
Sum Target = 50 10.872±0.812 0.079±0.015 7.809±0.094 0.210±0.029
Sum Target = 20 5.219±0.507 0.082±0.011 4.247±0.136 0.111±0.016

Sum Target = -100 8.345±0.324 0.074±0.002 9.508±0.169 0.837±0.008
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D.5. Additional Sum Control Analysis

The following figures provide comprehensive analysis of sum control performance across datasets (Unnormalized). The
plots demonstrate achieved sum values compared to target values, with Original and Unconditional (Uncon) baselines as
references. Analysis of control weight’s impact shows minimal influence on achieved sum values across different datasets
and target configurations.
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Figure 65. Comparison of achieved sum values versus target sum values across different datasets. The plots demonstrate the effectiveness
of sum control guidance in reaching desired targets.

E. Distribution Analysis
The FID scores reveal a fundamental trade-off between controllability and distribution preservation. While Diffusion-TS
demonstrates stronger modification capabilities (FID increasing from 0.416 to 16.812 with Anchor control on fMRI), it
comes at the cost of significant distribution shifts. In contrast, CSDI shows more resistance to modification but better
preserves the original distribution (FID changes from 1.188 to only 1.016 under similar conditions).

This raises an important open question: How can we achieve precise temporal control while maintaining distribution fidelity?
Future research should investigate mechanisms to balance these competing objectives, potentially through adaptive control
strength or hybrid architectures that combine the stability of CSDI with the flexibility of Diffusion-TS.
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Table 11. The complete distribution of discriminative, predictive, correlational, and FID scores for our method across different datasets
and control configurations. For all metrics, lower scores indicate better performance.

Model Metric Control ETTh Revenue fMRI Sines

Our - CSDI

Discriminative Score
Unconditional 0.361±0.007 0.245±0.164 0.306±0.021 0.017±0.007
Anchor Control 0.470±0.003 0.313±0.046 0.482±0.004 0.430±0.038
Statistics Control 0.373±0.007 0.272±0.055 0.377±0.019 0.034±0.007

Predictive Score
Unconditional 0.261±0.003 0.054±0.012 0.106±0.000 0.090±0.000
Anchor Control 0.263±0.001 0.070±0.003 0.106±0.000 0.091±0.000
Statistics Control 0.261±0.001 0.060±0.005 0.106±0.001 0.091±0.000

Correlational Score
Unconditional 8.428±0.000 0.034±0.000 2.212±0.000 0.062±0.000
Anchor Control 8.641±0.000 0.024±0.000 2.619±0.000 0.149±0.000
Statistics Control 8.531±0.000 0.034±0.000 3.944±0.000 0.065±0.000

FID Score
Unconditional 1.643±0.171 1.129±0.122 1.188±0.054 0.034±0.006
Anchor Control 2.720±0.133 2.233±0.088 1.016±0.019 3.170±0.319
Statistics Control 1.564±0.050 1.097±0.040 1.175±0.018 0.043±0.002

Our - Diffusion-TS

Discriminative Score
Unconditional 0.034±0.026 0.209±0.185 0.089±0.033 0.019±0.008
Anchor Control 0.437±0.004 0.393±0.030 0.495±0.001 0.460±0.011
Statistics Control 0.477±0.003 0.426±0.032 0.498±0.001 0.451±0.029

Predictive Score
Unconditional 0.260±0.002 0.070±0.015 0.110±0.001 0.090±0.000
Anchor Control 0.314±0.003 0.128±0.011 0.136±0.002 0.153±0.006
Statistics Control 0.310±0.004 0.114±0.005 0.117±0.001 0.110±0.003

Correlational Score
Unconditional 1.728±0.000 0.033±0.000 1.673±0.000 0.037±0.000
Anchor Control 5.647±0.000 0.107±0.000 16.791±0.000 0.405±0.000
Statistics Control 9.190±0.000 0.083±0.000 8.361±0.000 0.606±0.000

FID Score
Unconditional 0.177±0.015 1.221±0.040 0.416±0.011 0.021±0.003
Anchor Control 5.819±0.303 3.479±0.157 16.812±0.485 4.523±0.456
Statistics Control 5.335±0.221 3.822±0.210 2.652±0.092 5.954±0.438

F. Combined Control on Revenue Dataset
To demonstrate our method’s capability to handle multiple control signals simultaneously, we present a comprehensive
example using the Revenue dataset. The model successfully generates sequences that respect both anchor points and sum
constraints, highlighting the flexibility and effectiveness of our approach. These generated sequences maintain the dataset’s
inherent distributional characteristics while precisely adhering to multiple control signals. For additional examples of
combined control mechanisms, see Figure G which showcases our Time Series Editor interface in action.
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Figure 66. Demonstration of combined anchor and sum control on the Revenue dataset, showing the interaction across point-wise
constraints and overall sum requirements.
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G. Time Series Editor

Figure 67. The Screen Shot of Time Series Editor User Interface

The Time Series Editor is designed to solve the Time Series Editing problem. It can add fixed points, soft anchors, trending
control, segment-level sum, and average control. For the soft anchors, you can add anchor points based on start, end, and
interval setup. The Trending Control is based on the provided function expressions with independent variable x for better
precise control. We are currently developing the SketchPad mode for better user interaction, aiming to provide an All-in-One
application for efficient time series editing without training.

In Figure G, the green line represents the model prediction, and the red dots represent the observed/provided anchor points.
The error bar of each anchor point is the (1− confidence) to demonstrate the uncertainty of the observed points. In Figure G,
we use the Revenue Dataset with three features: Revenue, Download, and Daily Active Users.
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